On Asymptotic Behavior of HLL-Type Schemes at Low Mach Numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Preserving Hll Schemes

This work concerns the derivation of HLL schemes to approximate the solutions of systems of conservation laws supplemented by source terms. Such a system contains many models such as the Euler equations with high friction or the M1 model for radiative transfer. The main difficulty arising from these models comes from a particular asymptotic behavior. Indeed, in the limit of some suitable parame...

متن کامل

On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes

This paper presents an analysis of Godunov scheme in the low Mach number regime. We study the Riemann problem and show that the interface pressure contains acoustic waves of order OðM Þ where M is the reference Mach number even if the initial data are well-prepared and contain only pressure fluctuations of order OðM2 Þ. We then propose to modify the fluxes computed by Godunov type schemes by so...

متن کامل

Construction of Godunov type schemes accurate at any Mach number

Through a linear analysis, we show how to modify Godunov type schemes applied to the compressible Euler system to make them accurate at any Mach number. This allows to propose all Mach Godunov type schemes. A linear stability result is proposed and a formal asymptotic analysis justifies the construction in the barotropic case when the Godunov type scheme is a Roe scheme. We also underline that ...

متن کامل

Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation

In this paper we will present and analyse a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M ≪ 1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves ...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2020

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2020/7451240